IFN regulatory factor-1 bypasses IFN-mediated antiviral effects through viperin gene induction.

نویسندگان

  • Anja Stirnweiss
  • Antje Ksienzyk
  • Katjana Klages
  • Ulfert Rand
  • Martina Grashoff
  • Hansjörg Hauser
  • Andrea Kröger
چکیده

Viperin is an antiviral protein whose expression is highly upregulated during viral infections via IFN-dependent and/or IFN-independent pathways. We examined the molecular alterations induced by the transcriptional activator IFN regulatory factor (IRF)-1 and found viperin to be among the group of IRF-1 regulated genes. From these data, it was not possible to distinguish genes that are primary targets of IRF-1 and those that are targets of IRF-1-induced proteins, like IFN-beta. In this study, we show that IRF-1 directly binds to the murine viperin promoter to the two proximal IRF elements and thereby induces viperin expression. Infection studies with embryonal fibroblasts from different gene knock-out mice demonstrate that IRF-1 is essential, whereas the type I IFN system is dispensable for vesicular stomatitis virus induced viperin gene transcription. Further, IRF-1, but not IFN type I, mediates the induction of viperin transcription after IFN-gamma treatment. In contrast, IRF-1 is not required for IFN-independent viperin induction by Newcastle disease virus infection and by infection with a vesicular stomatitis virus mutant that is unable to block IFN expression and secretion. We conclude that the IRF-1 mediated type I IFN independent mechanism of enhanced viperin expression provides a redundant mechanism to protect cells from viral infections. This mechanism becomes important when viruses evade innate immunity by antagonizing the induction and function of the IFN system.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Astrocyte indoleamine 2,3-dioxygenase is induced by the TLR3 ligand poly(I:C): mechanism of induction and role in antiviral response.

Indoleamine 2,3-dioxygenase (IDO) is the first and rate-limiting enzyme in the kynurenine pathway of tryptophan catabolism and has been implicated in neurotoxicity and suppression of the antiviral T-cell response in HIV encephalitis (HIVE). Here we show that the Toll-like receptor 3 (TLR3) ligand poly(I:C) (PIC) induces the expression of IDO in human astrocytes. PIC was less potent than gamma i...

متن کامل

A novel role for IFN-stimulated gene factor 3II in IFN-γ signaling and induction of antiviral activity in human cells.

Type I (e.g., IFN-α, IFN-β) and type II IFNs (IFN-γ) have antiviral, antiproliferative, and immunomodulatory properties. Both types of IFN signal through the Jak/STAT pathway to elicit antiviral activity, yet IFN-γ is thought to do so only through STAT1 homodimers, whereas type I IFNs activate both STAT1- and STAT2-containing complexes such as IFN-stimulated gene factor 3. In this study, we sho...

متن کامل

Antiviral Activity of Salmonid Interferon Gamma against Infectious Pancreatic Necrosis Virus and Salmonid Alphavirus and its Dependency on Type I Interferon

This work explores antiviral activity and gene induction properties of interferon gamma (IFN-γ) compared to type I IFN (IFNa1) in Atlantic salmon. IFN-γ protected salmon cells against infectious pancreatic necrosis virus (IPNV) induced cytopathic effect (CPE), reduced viral titers and inhibited synthesis of the viral structural protein VP3. Moreover, IFN-γ showed potent antiviral activity again...

متن کامل

The Jak-Stat Signaling Pathway of Interferons System: Snapshots

Interferons (IFNs) are a family of small regulatory glycoproteins that play a central role in the defense against viral infections. Although IFNs have been initially discovered as antiviral factors, today they are known as an integral part of the cytokine network that affect a wide range of biological processes. IFNs exert their pleiotropic effects through their multisubunit cell surface recept...

متن کامل

Primary activation of interferon A and interferon B gene transcription by interferon regulatory factor 3.

The family of interferon (IFN) regulatory factors (IRFs) encodes DNA-binding transcription factors, some of which function as modulators of virus-induced signaling. The IRF-3 gene is constitutively expressed in many tissues and cell types, and neither virus infection nor IFN treatment enhances its transcription. In infected cells, however, IRF-3 protein is phosphorylated at the carboxyl terminu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of immunology

دوره 184 9  شماره 

صفحات  -

تاریخ انتشار 2010